Mathematical Economics

Linear Demand & Supply Functions

Typical Demand Function

- Demand for a good can be expressed using mathematical functions
- A typical demand function looks like $Q_D = a bP$ where,
 - o Q_D represents the quantity demanded
 - o a represents the autonomous level of demand, or the quantity demanded if the price were zero (**Q-intercept**)
 - o **b** represents the change in quantity demanded resulting from a change in price (the slope calculated as $\Delta Q_d/\Delta P$)
 - o P represents the price of a single item

Example; Demand for Cappuccinos

- Suppose the demand for cappuccinos in Richmond Hill can be expressed as $\mathbf{Q_D} = 600 50\mathbf{P}$
 - o It is possible to construct both a demand schedule and demand curve from this demand function

Linear demand schedule: Cappuccinos			
Price of Cappuccinos (P)	Quantity demanded per day (QD)		
10	100		
8	200		
6	300		
4	400		
2	500		
0	600		

- o A movement along the demand curve will occur any time the price of cappuccinos increases or decreases
- o At lower prices, more are demanded; at higher prices fewer cappuccinos are demanded by consumers

Changes in 'a'

- If any of the determinants of demand change, then the 'a' value in the demand function will change
 - o The demand curve will shift either left or right
- Example; Suppose the demand function changes to $Q_D = 500 50P$

Linear demand schedule: Cappuccinos			
Price of Cappuccinos (P)	Quantity demanded per day (Q_D)		
10	0		
8	100		
6	200		
4	300		
2	400		
0	500		

- o The slope of the new demand curve will be the same as the original curve
- o The demand curve shifts left, or down by 100 units at every price
- o The Q-intercept is now at 500 rather than 600

Changes in 'b'

- Changes to the price coefficient **b** will change the steepness of the demand curve
 - o This changes the price elasticity of the demand curve
- Example; Suppose the demand function changes to $Q_D = 600 30P$

Linear demand schedule: Cappuccinos			
Price of Cappuccinos (P)	Quantity demanded per day (Q_D)		
10	300		
8	360		
6	420		
4	480		
2	570		
0	600		

- o The demand curve has become steeper, indicating consumers are less sensitive to price changes than previously
- o The overall demand for cappuccinos has become more inelastic

Typical Supply Function

- Supply for a good can also be expressed using mathematical functions
- A typical supply function looks like $Q_s = c + dP$ where,
 - o Q_s represents the quantity supplied
 - o c represents the autonomous level of supply, or the quantity produced if the price were zero (**Q-intercept**)
 - o d represents the rate at which a change in price will cause the quantity supplied to increase (the slope calculated as $\Delta Q_s/\Delta P$)
 - o P represents the price of a single item

Example; Supply Cappuccinos

- Suppose the supply of cappuccinos in Richmond Hill can be expressed as $Q_s = -200 + 150P$
 - o It is possible to construct both a supply schedule and supply curve from this supply function

Linear supply schedule: Cappuccinos			
Price of Cappuccinos (P)	Quantity supplied per day (Q_D)		
10	1300		
8	1000		
6	700		
4	400		
2	100		
0	-200		

o There is a direct relationship between the price and quantity supplied. As price falls, producers are willing to provide fewer drinks to the market

Changes in 'c'

- ullet If any of the non-price determinants of supply change, then the ' ${f c}$ ' value in the supply function will change
 - o The supply curve will shift either left or right
- Example; Suppose the supply function changes to $Q_S = -100 + 150P$

Linear supply schedule: Cappuccinos			
Price of Cappuccinos (P)	Quantity supplied per day (Q_D)		
10	1400		
8	1100		
6	800		
4	500		
2	200		
0	-100		

- The quantity supplied at each price level is reduced, but the slope remains the same
- o The price intercept is now \$0.75 rather than \$1.33

Changes in 'd'

- Changes to the price coefficient **d** will change the steepness of the supply curve
 - o This changes the price elasticity of the supply curve
- Example; Suppose the supply function changes to Q = -200 + 200P

Linear supply schedule: Cappuccinos			
Price of Cappuccinos (P)	Quantity supplied per day (Q_D)		
10	1800		
8	1400		
6	1000		
4	600		
2	200		
0	-200		

- o The supply curve is less steep, indicating consumers are more sensitive to price changes than previously
- o The overall supply for cappuccinos has become more elastic

Summary

	Component	Change	Impact on Demand/Supply
	a or c	Increase	Rightward shift (Increase)
Linear Demand			
$(\mathbf{Q_d} = \mathbf{a} - \mathbf{bP})$	a or c	Decrease	Leftward shift (Decrease)
Linear Supply $(\mathbf{Q}_{s} = \mathbf{c} + \mathbf{dP})$	b or d	Increase	Less steep (Elastic)
	b or d	Decrease	More steep (Inelastic)

Study Questions

- o 1. Use the linear demand function, $Q_D = 300 30P$
- A. Create a demand schedule with prices of \$0, \$3, \$5, \$7 and \$9
- o **B.** Create a demand curve, plotting point from your demand schedule
- o **C.** Decrease the value of **a**, the autonomous element of demand, by 30 units. Create a new demand schedule, with the adjusted values for $\mathbf{Q}_{\mathbf{D}}$.
- o D. On your previous diagram, show the new demand curve
- o **E.** Now change the value of the price coefficient, in the original function to -10. Calculate the prices and quantities demanded, and list them of a demand schedule
- **o F.** Create a new demand curve

Study Questions

- o 1. Use the linear demand function, $Q_s = -100 + 10P$
- o **A.** Create a supply schedule with prices of \$10, \$20, \$30, \$40 and \$50
- **B.** Create a supply curve, plotting point from your demand schedule
- o **C.** Decrease the value of **c**, the autonomous element of supply, by 50 units. Create a new supply schedule, with the adjusted values for $\mathbf{Q}_{\mathbf{S}}$.
- o **D.** On your previous diagram, show the new supply curve