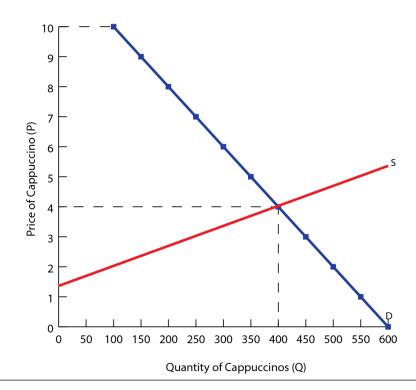
Market Equilibrium and Linear Equations

Market Equilibrium and Linear Equations

- Linear equations can be used to solve the market equilibrium by setting the quantity supplied equal to the quantity demanded
 - o The market is in equilibrium when $\mathbf{Q_d} = \mathbf{Q_s}$
- Example; Suppose the market for cappuccino can be modeled by the following, $Q_d = 600 50P$ and $Q_s = -200 + 150P$


Linear supply and demand schedules: Cappuccinos		
Price of Cappuccinos (P)	Quantity demanded (Q _D)	Quantity supplied (Q_s)
10	100	1300
8	200	1000
6	300	700
4	400	400
2	500	100
0	600	-200

The equilibrium is the point at which supply equals demand,

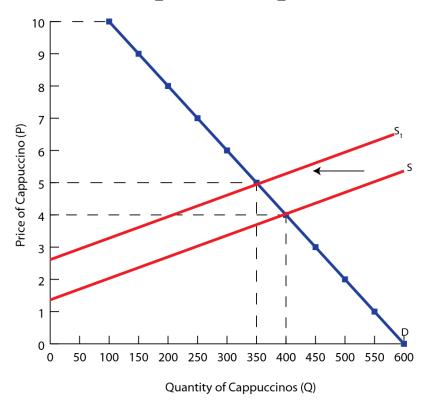
$$Q_d = Q_s$$

 $600 - 50P = -200 + 150P$
 $200P = 800$

Therefore, P_E = \$4 and Q_E = 400 units

Therefore the equilibrium price is \$4 and the quantity is 400 units

Shifts in Supply and Equilibrium


- Shifts in the supply can also be illustrated using linear functions
- Example; Suppose the price of coffee beans increases, adding to the costs of the production of cappuccino and reducing the supply. The new supply function is $\mathbf{Q_s} = -400 + 150 \mathbf{P}$

Linear supply schedule: Cappuccinos		
Price of Cappuccinos (P)	Quantity supplied per day (Q_D)	
10	1100	
8	800	
6	500	
4	200	
2	-100	
0	-400	

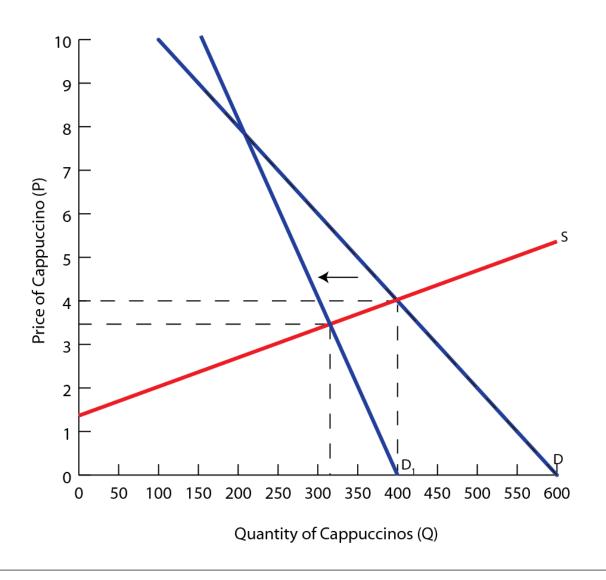
o Solving the new equilibrium,

$$Q_d = Q_s$$

 $600 - 50P = -400 + 150P$
 $200P = 1000$

Therefore, P_E = \$5 and Q_E = 350 units

o The price rises until the market is cleared, with all excess demand eliminated


Shifts in Demand and Equilibrium

- Changes in demand will also effect the equilibrium price and quantity
- Example; Suppose a decrease in the demand for cappuccinos shifts the demand curve to the right. In addition, the demand curve becomes less elastic. The new demand function is $Q_d = 400 25P$
 - o Solving the new equilibrium algebraically,

$$Q_d = Q_s$$

 $400 - 25P = -200 + 150P$
 $600P = 175$

Therefore, P_E = \$3.43 and Q_E = 314 units

• The decrease in demand causes the price of cappuccinos to fall from \$4 to \$3.43 and the equilibrium quantity to decrease from 400 to 314 drinks

