Tax & Subsidies and Linear Functions

<u>Overview</u>

- Given a supply function of the general form $Q_S = c + dP$
 - o Whenever there is a downward shift of the function by \mathbf{s} units, where \mathbf{s} is the subsidy per unit we replace \mathbf{P} by $\mathbf{P} + \mathbf{s}$. The new supply function therefore becomes $\mathbf{Q}_s = \mathbf{c} + \mathbf{d}(\mathbf{P} + \mathbf{s})$.
 - o Whenever there is a *upward shift* of the function by t units, where t is the tax per unit we replace P by P-t. The new supply function therefore becomes $Q_s = c + d(P-t)$.

	Original Function	Revised Function
Taxes (t)	$\mathbf{Q}_{\mathrm{s}} = \mathbf{c} + \mathbf{dP}$	$Q_s = c + d(P - t)$
Subsidy (s)	$Q_{s} = c + dP$	$Q_s = c + d(P + s)$

Recap-Indirect Taxes

Tax Incidence and Linear Functions

- Linear functions can be used for the analysis of tax incidence
- Example; Suppose the demand and supply of cigarettes can be modeled as follows, $Q_D = 1600 200P$ and $Q_S = 600 + 300P$

Linear supply and demand schedules: Cigarettes			
Price (P)	Quantity demanded (QD)	Quantity supplied (Q _S)	
5	600	2100	
4	800	1800	
3	1000	1500	
2	1200	1200	
1	1400	900	
0	1600	600	

o We can determine the equilibrium price and quantity, algebraically

$$Q_d = Q_s$$

 $1600 - 200P = 600 + 300P$
 $500P = 1000$

Therefore, P_E = \$2 and Q_E = 1200 units

Therefore the equilibrium price is \$2 and the quantity is 1200 units

Example; Tax on Cigarettes

- Example; Suppose the government places a \$1 tax on each pack of cigarettes
 - o The tax is a cost imposed on the producers of cigarettes, so whatever the price consumers pay, \$1 must be given over to the government
 - Therefore, producers will receive \$1 less than the new equilibrium price
 - o The new supply function can be expressed as $Q_S = 600 + 300(P-1)$ or by simplifying we get $Q_S = 300 + 300P$
 - o To determine the new equilibrium, we set the new supply equal to demand

$$Q_d = Q_s$$

 $300 + 300P = 1600 - 200P$
 $500P = 1300$

Therefore, P_E = \$2.6 and Q_E = 1080 unit

Therefore the equilibrium price is \$2.6 and the quantity is 1080 units

- o Because the demand for cigarettes is relatively inelastic, the larger burden of the tax is passed on to consumers.
- o We can also analyze the impact of the tax on various other factors,
- Tax revenue: is shown by the area A + B + E + F and is equal to $\$1 \times 1080 = \1080
- o Consumer tax burden: is represented by the area A + B and is equal to $(\$2.60 \$2) \times 1080 = \$648$
- o Producer tax burden: is represent by the area F + E and is equal to $(\$2 \$1.60) \times 1080 = \$432$
- o Effect on consumer surplus: the loss of the consumer surplus is A + B + C which is equal to \$648 + 0.5(72) = \$684

- o **Effect on producer surplus:** the loss of producer surplus is represented by $\mathbf{D} + \mathbf{E} + \mathbf{F}$ and is equal to the producer burden plus the area of \mathbf{D} which is \$432 + 0.5(48) = \$456
- Welfare loss from the tax: overall, the amount of both consumer and producer surplus in the cigarette market falls because of the tax
 - The total loss in consumer and producer surplus is \$1140

• Net welfare loss =
$$\Delta G + \Delta CS + \Delta PS$$

= $$1080 - $684 - 456
= $$60$

- The tax on cigarettes creates \$1080 of government revenue, but imposes a \$60 welfare loss to society
 - o Since consumers and producers of cigarettes lose more welfare than society gains in tax revenue

Subsidies and Linear Functions

Recap-Subsidies

Subsidies and Linear Functions

- Linear functions can be used for the analysis of subsidies
- Example; Suppose the demand and supply of cotton can be modeled as follows, $Q_D = 30 4P$ and $Q_S = 6 + 2P$

Linear supply and demand schedules: Cigarettes			
Price (P)	Quantity demanded (Q _D)	Quantity supplied (Q _S)	
6	6	18	
4	14	14	
3	18	12	
2	22	10	
1	26	8	
0	30	6	

o We can determine the equilibrium price and quantity, algebraically

$$Q_d = Q_s$$

30 - 4P = 6+ 2P
6P = 24

Therefore, P_E = \$4 and Q_E = 14 units

Therefore the equilibrium price is \$4 and the quantity is 14 units

Example; Subsidy on Cotton

- Example; Suppose the government places a \$3 subsidy on each kilogram of cotton
 - The producers will now receive \$3 more per kilogram produced than the price the consumers pay
 - o The new supply function can be expressed as $Q_s = 6 + 2(P + 3)$ or by simplifying we get $Q_s = 12 + 2P$
 - o To determine the equilibrium after the price subsidy, we set the new supply function equal to demand

$$Q_d = Q_s$$

12 + 2P = 30 - 4P
6P = 18

Therefore, P_E = \$3 and Q_E = 18 units

Therefore the equilibrium price is \$3 and the quantity is 18 units

Calculate

- 1) Government Spending
- 2) Δ Consumer Surplus
- 3) Δ Producer Surplus
- 4) Welfare Loss

- o Both consumer and producer welfare increases as a result of a subsidy,
- o Change in consumer surplus: the increase in the consumer surplus is E + F + G since consumers now enjoy a lower price and greater quantity. This is equal to \$16 million
- Change in producer surplus: the increase in producer surplus is A + B which is equal to \$32 million
- o Increase in total consumer and producer welfare: the subsidy increases producer and consumer welfare by \$48 million
- We also need to take into the account the cost to taxpayers and society of subsidizing cotton grower
 - o Total cost of the subsidy: is A + B + C + D + E + F + G and is equal to $$3 \times 18 = 54 million

- o **Net effect on welfare:** the cost of the subsidy was \$54 million, but the benefit was only \$48 million, so the net loss of welfare for society was \$6 million
- Deadweight (welfare) loss: is represented by the area of triangle C + D which is equal to \$6 million
- The subsidy creates a deadweight loss for society as a whole
 - o The taxpayer money used to subsidize cotton growers exceeds the increase in cotton growers and consumers welfare by \$6 million