

Recap- Price Elasticity of Demand

• Price Elasticity of Demand (PED): is a measure of the responsiveness of the quantity of a good demanded to changes in its price.

$$_{O}$$
 PED = $\%\Delta Q_{D} \div \%\Delta P$

Value of PED	Classification	Interpretation			
Frequently Encountered Cases					
0 < PED < 1	Inelastic demand	Price insensitive			
$1 < PED < \infty$	Elastic demand	Price sensitive			
Special Cases					
PED = 1	Unitary elastic demand	$\%\Delta Q_D = \%\Delta P$			
PED = 0	ED = 0 Perfectly inelastic demand Fixed quantity				
$PED = \infty$	Perfectly elastic demand Fixed price				

- There are several factors that determine whether the demand for a good is elastic or inelastic.
 - 1) Number and closeness of substitutes
 - o 2) Necessities versus luxuries
 - o 3) Length of time
 - o 4) Proportion of income spent on a good
- Along any downward-sloping, straight-line demand curve, the PED varies as we move along the curve.
 - o Demand is price elastic at high-prices and low-quantities
 - o Demand is price inelastic at low prices and large-quantities
 - o At the midpoint of the demand curve, there is unit elastic demand

PED- Calculations

- Example; Tesla Motors Model S retails for \$85,000 in Canada in August. Approximately, 100 Model S vehicles were sold in August.
- In September, the government implemented a rebate program of \$5,000 for electric vehicles. Estimates indicate 110 vehicles will be sold in September.

• PED =
$$\%\Delta Q_D \div \%\Delta P$$

= $[(Q_{NEW} - Q_{OLD})/Q_{OLD}] \div [(P_{NEW} - P_{OLD})/P_{OLD}]$
= $[(110 - 100)/100] \div [(\$80,000 - \$85,000)/\$85,000]$
= $10\% \div 5.8824\%$
= 1.70

This indicates that the demand for the Model S is *price elastic*, since the
 PED > 1 and a decrease in price will increase Tesla's revenues.

Cross-Price Elasticity of Demand

- Cross-Price Elasticity of Demand (XED): is a measure of the responsiveness of demand for one good to a change in the price of another good.
- It involves demand curve shifts and provides information on whether demand increases or decreases, and on the size of the demand curve shifts

$$\circ$$
 XED = $\%\Delta Q_{X} \div \%\Delta P_{Y}$

Value of XED	Classification	Example
XED > 0	Substitutes	Coca-Cola & Pepsi
XED < 0	Complements	Ice-Cream & Cones

XED- Calculations

- **Example;** Suppose a convenience store decides to increase the price of a 500 mL bottle of Coca-Cola from \$1.50 to \$1.80.
- The store maintains their prices for Pepsi and the quantity demanded for the product increases from 1,000 to 1,140 bottles in a particular month.

• XED =
$$\%\Delta Q_X \div \%\Delta P_Y$$

= $[(Q_{NEW} - Q_{OLD})/Q_{OLD}] \div [(P_{NEW} - P_{OLD})/P_{OLD}]$
= $[(1,140 - 1,000)/1,000] \div [(\$1.80 - \$1.50)/\$1.50]$
= $14\% \div 20\%$
= 0.70

This indicates that Coca-Cola and Pepsi have a high degree of substitutability since XED > 0 and relatively close to 1.

Income Elasticity of Demand

- Income Elasticity of Demand (YED): is a measure of the responsiveness of demand to changes in income.
- It involves demand curve shifts and provides information on the direction of change of demand given a change in income and on the size of the change.

$$\bullet \mathbf{YED} = \%\Delta \mathbf{Q}_{\mathbf{D}} \div \%\Delta \mathbf{Y}$$

Value of YED	Classification	Interpretation
YED < 0	Inferior Good	Quantity falls with income
YED > 0	Normal Good	Quantity increases with income
$0 \le YED \le 1$	Necessities	Income inelastic demand
YED > 1	Luxuries	Income elastic demand

YED- Calculations

• Example; Your income increases from £1,000 a month to £1,200 a month. As a result, the frequency that you dine-out at restaurants increases from 4 to 6 times per month.

• YED =
$$\%\Delta Q_D \div \%\Delta Y$$

= $[(Q_{NEW} - Q_{OLD})/Q_{OLD}] \div [(Y_{NEW} - Y_{OLD})/Y_{OLD}]$
= $[(6 - 4)/4] \div [(£1,200 - £1,000)/£1,000]$
= $50\% \div 20\%$
= 2.50

 This indicates that dining-out at restaurants has income elastic demand and is a normal good since XED > 1

Recap- Price Elasticity of Supply

• Price Elasticity of Supply (PES): is a measure of the responsiveness of the quantity of a good supplied to changes in its price.

$$_{\circ}$$
 PES = $\%\Delta Q_{S} \div \%\Delta P$

Value of PES	Classification	Interpretation		
Frequently Encountered Cases				
0 < PES< 1	Inelastic supply	Price insensitive		
$1 \le PES \le \infty$	Elastic supply	Price sensitive		
Special Cases				
PES = 1	Unitary elastic supply	$\%\Delta Q_S = \%\Delta P$		
PES = 0	Perfectly inelastic supply	Fixed quantity		
$PES = \infty$	Perfectly elastic supply	Fixed price		

• There are several factors that determine whether the supply for a good is elastic or inelastic.

• 1) Length of time

o The amount of time firms have to adjust their inputs and the quantity supplied in response to changes in price

2) Mobility of the factors of production

 The ease and speed with which firms can shift resources and production between different products

3) Spare capacity of firms

o The greater the spare capacity the more elastic the supply

4) Ability to store stocks

o Firms that have an ability to store stocks are likely to have a more elastic supply than firms that cannot store stocks

- **Example;** Suppose that the price of oil increases from \$100 to \$110 as a result of instability in the Middle East.
- In response, the quantity of oil supplied by Canadian producers increases from 1.25 to 1.30 million barrels of oil per day.

• PED =
$$\%\Delta Q_{s} \div \%\Delta P$$

= $[(Q_{NEW} - Q_{OLD})/Q_{OLD}] \div [(P_{NEW} - P_{OLD})/P_{OLD}]$
= $[(1.30 - 1.25)/1.25] \div [(\$110 - \$100)/\$100]$
= $4\% \div 10\%$
= 0.4

This indicates that the supply of oil from Canadian sources is *price inelastic*, since the **PES** ≤ 1 .

Summary of Key Characteristics

Elasticity	Values		Description
	PED = 0	PES = 0	Perfectly inelastic
Price elasticity of demand $PED = \%\Delta Q_D \div \%\Delta P$	PED < 1	PES < 1	Price inelastic
$\Gamma ED = 70\Delta Q_D \cdot 70\Delta F$	PED = 1	PES = 1	Unit elastic
Price elasticity of supply	PED > 1	PES > 1	Price elastic
$PES = \%\Delta Q_S \div \%\Delta P$	$PED = \infty$	$PES = \infty$	Perfectly elastic
	XED > 0		Substitutes
Cross-price elasticity of demand $XED = \%\Delta Q_x \div \%\Delta P_y$	XED = 0		Unrelated
$AED = 70\Delta Q_{X} \cdot 70\Delta \Gamma_{Y}$	XED < 0		Complements
	YED < 0		Inferior good
Income elasticity of demand $YED = \%\Delta Q_D \div \%\Delta Y$	YED > 0		Normal good
$ILD = 70\Delta Q_D \cdot 70\Delta I$	0 < YE	D < 1	Income inelastic (Necessity)
	YED > 1		Income elastic (Luxury)

Study Questions

- o 1. If the XED between Coca-Cola and Pepsi is 0.7, how will the demand for Coca-Cola change if the price of Pepsi increases by 5%?
- Your income increases from £1000 a month to £1200 a month. As a result, you increase your purchases of pizza from 8 to 12 per month, and decrease your purchases of chees sandwiches from 15 to 10 per month.
- o A. Calculate your income elasticity of demand for pizzas and for cheese sandwiches.
- o B. What kind of goods are pizzas and cheese sandwiches for you?
- o **C.** Show using diagrams the effect of your increase in income on your demand for pizzas and cheese sandwiches.